
0xSwap Partner API Documentation

Overview

The 0xSwap Partner API allows third-party services to integrate cryptocurrency exchange functionality

directly into their platforms. This RESTful API provides endpoints for retrieving exchange rates,

creating orders, and tracking order status.

Base URL: https://0xswap.exchange/api/partner

API Version: 1.0

Last Updated: January 31, 2026

Table of Contents

Authentication

Available Currencies

Get Exchange Rate

Create Order

Get Order Status

Error Codes

Currency Codes

Rate Limiting

Best Practices

Authentication

All API requests require authentication using API keys. You must include both your public and secret

keys in the request headers.

Request Headers

X-API-Public-Key: your_public_key_here
X-API-Secret-Key: your_secret_key_here
Content-Type: application/json

Obtaining API Keys

Contact 0xSwap support via https://0xswap.exchange/support (https://0xswap.exchange/support)

Request partner API access

You will receive:

- Public Key: Used to identify your account (starts with partner_)

- Secret Key: Used to authenticate requests (64-character hex string)

1.

2.

3.

4.

5.

6.

7.

8.

9.

1.

2.

3.

1

https://0xswap.exchange/support
https://0xswap.exchange/support

⚠️ Security Warning: Never expose your secret key in client-side code. All API calls MUST be

made from your backend server.

Endpoints

1. Get Available Currencies

Retrieve the list of all available cryptocurrencies for exchange.

Endpoint: GET /api/partner/ccies

Request Example:

curl -X GET https://0xswap.exchange/api/partner/ccies \
-H "X-API-Public-Key: partner_abc123..." \
-H "X-API-Secret-Key: c105e76650fda1b9..."

Response:

2

{
"code": 0,
"data": [

{
"code": "BTC",
"coin": "Bitcoin",
"network": "BTC",
"name": "Bitcoin",
"recv": true,
"send": true,
"tag": null,
"logo": "https://ff.io/assets/images/coins/svg/btc.svg",
"priority": 100

},
{

"code": "USDTERC20",
"coin": "USDT",
"network": "ETH",
"name": "Tether (ERC20)",
"recv": true,
"send": true,
"tag": null,
"logo": "https://ff.io/assets/images/coins/svg/usdt.svg",
"priority": 90

},
{

"code": "USDTTRC",
"coin": "USDT",
"network": "TRX",
"name": "Tether (TRC20)",
"recv": true,
"send": true,
"tag": null,
"logo": "https://ff.io/assets/images/coins/svg/usdttrc.svg",
"priority": 90

}
]

}

Response Fields:

3

Field Type Description

code string Currency code (e.g., “BTC”,

“USDTERC20”) - USE THIS

IN API CALLS

coin string Base coin name (e.g., “Bit‐

coin”, “USDT”)

network string Blockchain network (e.g.,

“BTC”, “ETH”, “TRX”)

name string Full display name

recv boolean Whether currency can be re‐

ceived (deposited)

send boolean Whether currency can be sent

(withdrawn)

tag string|null Memo/tag required (e.g., XRP,

XLM)

logo string URL to currency logo image

priority number Display priority (higher =

more prominent)

2. Get Exchange Rate

Calculate the exchange rate between two currencies for a specific amount.

Endpoint: POST /api/partner/price

Request Example:

curl -X POST https://0xswap.exchange/api/partner/price \
-H "X-API-Public-Key: partner_abc123..." \
-H "X-API-Secret-Key: c105e76650fda1b9..." \
-H "Content-Type: application/json" \
-d '{

 "fromCcy": "USDTERC20",
 "toCcy": "USDTTRC",
 "direction": "from",
 "amount": 100
 }'

Request Body:

4

Field Type Required Description

fromCcy string ✅ Yes Source currency code

(e.g., “USDTERC20”)

toCcy string ✅ Yes Destination currency

code (e.g., “US‐

DTTRC”)

direction string ✅ Yes "from" (fixed input)

or "to" (fixed out‐

put)

amount number ✅ Yes Amount to exchange

Response:

{
"code": 0,
"data": {

"from": {
"code": "USDTERC20",
"network": "ETH",
"coin": "USDT",
"amount": "100",
"rate": 0.995,
"precision": 8,
"min": "10",
"max": "135678.42",
"usd": 100,
"btc": 0.00120507

},
"to": {

"code": "USDTTRC",
"network": "TRX",
"coin": "USDT",
"amount": "99.179",
"rate": 0.995,
"precision": 8,
"min": "1",
"max": "134999.709",
"usd": 99.18

},
"errors": []

}
}

Response Fields:

5

Field Description

from.code Source currency code

from.amount Source amount (as string)

from.min Minimum exchange amount for source cur‐

rency

from.max Maximum exchange amount for source cur‐

rency

from.usd USD equivalent of source amount

to.code Destination currency code

to.amount Destination amount after exchange (as string)

to.usd USD equivalent of destination amount

errors Array of validation errors (empty if successful)

⚠️ Important: Always check from.min and from.max before creating an order!

3. Create Exchange Order

Create a new exchange order with the specified parameters.

Endpoint: POST /api/partner/create-order

Request Example:

curl -X POST https://0xswap.exchange/api/partner/create-order \
-H "X-API-Public-Key: partner_abc123..." \
-H "X-API-Secret-Key: c105e76650fda1b9..." \
-H "Content-Type: application/json" \
-d '{

 "fromCcy": "USDTERC20",
 "toCcy": "USDTTRC",
 "direction": "from",
 "amount": 100,
 "toAddress": "TXYZPrarV6ahiFkhEK3z6XZHzqKRr5ksj5",
 "email": "user@example.com"
 }'

Request Body:

6

Field Type Required Description

fromCcy string ✅ Yes Source currency code

(e.g., “USDTERC20”)

toCcy string ✅ Yes Destination currency

code (e.g., “US‐

DTTRC”)

direction string ✅ Yes "from" (fixed input)

or "to" (fixed out‐

put)

amount number ✅ Yes Amount to exchange

toAddress string ✅ Yes Recipient wallet ad‐

dress

toTag string ⚠️ Conditional Memo/tag for XRP,

XLM, TON, ATOM, etc.

email string ❌ No Email for order noti‐

fications (optional)

Response (Success):

{
"code": 0,
"data": {

"orderNumber": "UHWVPB",
"status": "NEW",
"from": {

"code": "USDTERC20",
"coin": "USDT",
"network": "ETH",
"amount": "100",
"address": "0x742d35Cc6634C0532925a3b844Bc9e7595f0bEb",
"tag": null,
"txId": null

},
"to": {

"code": "USDTTRC",
"coin": "USDT",
"network": "TRX",
"amount": "99.179",
"address": "TXYZPrarV6ahiFkhEK3z6XZHzqKRr5ksj5",
"tag": null,
"txId": null

},
"timeLeft": 900

}
}

Response Fields:

7

Field Description

orderNumber Unique 6-character order ID (save this!)

status Order status (see Order Statuses)

from.address Deposit address - user must send funds

here

from.amount Amount user needs to send

to.address Recipient address (where funds will be sent)

to.amount Amount user will receive

timeLeft Seconds remaining to make deposit (typically

900s = 15min)

⚠️ Critical: User must send exactly from.amount to from.address within timeLeft seconds!

Response (Error - Amount Out of Limits):

{
"code": 1,
"error": "Amount is below minimum limit. Minimum: 10 USDTERC20"

}

4. Get Order Status

Track the status of an existing order.

Endpoint: GET /api/partner/order/{orderNumber}

Request Example:

curl -X GET https://0xswap.exchange/api/partner/order/UHWVPB \
-H "X-API-Public-Key: partner_abc123..." \
-H "X-API-Secret-Key: c105e76650fda1b9..."

Response:

8

{
"code": 0,
"data": {

"orderNumber": "UHWVPB",
"status": "PENDING",
"from": {

"code": "USDTERC20",
"coin": "USDT",
"network": "ETH",
"amount": "100",
"address": "0x742d35Cc6634C0532925a3b844Bc9e7595f0bEb",
"tag": null,
"txId": "0xabc123..."

},
"to": {

"code": "USDTTRC",
"coin": "USDT",
"network": "TRX",
"amount": "99.179",
"address": "TXYZPrarV6ahiFkhEK3z6XZHzqKRr5ksj5",
"tag": null,
"txId": null

},
"timeLeft": 650

}
}

Order Statuses:

Status Description

NEW Order created, waiting for deposit

PENDING Deposit received, waiting for confirmations

EXCHANGE Funds being exchanged

DONE Exchange completed, funds sent to recipient

EXPIRED Order expired (no deposit within time limit)

EMERGENCY Issue detected, contact support

Error Codes

All API responses follow this structure:

{
"code": 0,
"data": { ... } // Present on success (code = 0)

}

9

{
"code": 1,
"error": "Error message" // Present on error (code > 0)

}

Error Code Reference:

Code HTTP Status Description

0 200 Success

1 400 Bad Request (invalid para‐

meters)

2 401 Unauthorized (invalid API

keys)

3 404 Not Found (order doesn’t ex‐

ist)

4 429 Rate Limit Exceeded

5 500 Internal Server Error

Common Error Messages:

// Missing API credentials
{

"code": 2,
"error": "Missing API credentials"

}

// Invalid API keys
{

"code": 2,
"error": "Invalid API credentials"

}

// Currency not available
{

"code": 1,
"error": "One or both currencies are not available"

}

// Amount out of limits
{

"code": 1,
"error": "Amount is below minimum limit. Minimum: 10 USDTERC20"

}

// Order not found
{

"code": 3,
"error": "Order not found"

}

10

Currency Codes

Important Notes

USDT has multiple variants based on blockchain network:

- USDTERC20 - USDT on Ethereum (ERC20)

- USDTTRC - USDT on Tron (TRC20)

- USDTBSC - USDT on BSC (BEP20)

- USDTMATIC - USDT on Polygon

- USDTARBITRUM - USDT on Arbitrum

- USDTSOL - USDT on Solana

Always use the FULL code returned by /api/partner/ccies

Check minimum amounts before creating orders:

- BTC: typically 0.0005 BTC

- ETH: typically 0.01 ETH

- USDTERC20: typically 10 USDT

- USDTTRC: typically 1 USDT

Popular Currency Pairs

USDTERC20 → USDTTRC (ERC20 to TRC20)
BTC → ETH
ETH → BTC
BTC → USDTTRC

Rate Limiting

Rate Limit: 60 requests per minute per API key

Burst: Up to 10 requests per second

Rate Limit Headers:

X-RateLimit-Limit: 60
X-RateLimit-Remaining: 45
X-RateLimit-Reset: 1706745600

If you exceed the rate limit, you’ll receive:

{
"code": 4,
"error": "Rate limit exceeded. Try again in 30 seconds."

}

1.

2.

3.

•

•

11

Best Practices

1. Always Check Rates Before Creating Orders

// Step 1: Get rate
const rateResponse = await fetch('https://0xswap.exchange/api/partner/price', {

method: 'POST',
headers: {

'X-API-Public-Key': publicKey,
'X-API-Secret-Key': secretKey,
'Content-Type': 'application/json'

},
body: JSON.stringify({

fromCcy: 'USDTERC20',
toCcy: 'USDTTRC',
direction: 'from',
amount: 100

})
});

const rate = await rateResponse.json();

// Step 2: Check minimums/maximums
if (rate.code === 0) {

const min = parseFloat(rate.data.from.min);
const max = parseFloat(rate.data.from.max);
const amount = 100;

if (amount < min) {
console.error(`Amount too low. Minimum: ${min}`);
return;

}

if (amount > max) {
console.error(`Amount too high. Maximum: ${max}`);
return;

}

// Step 3: Create order
const orderResponse = await fetch('https://0xswap.exchange/api/partner/create-or‐

der', {
method: 'POST',
headers: {

'X-API-Public-Key': publicKey,
'X-API-Secret-Key': secretKey,
'Content-Type': 'application/json'

},
body: JSON.stringify({

fromCcy: 'USDTERC20',
toCcy: 'USDTTRC',
direction: 'from',
amount: 100,
toAddress: 'TXYZPrarV6ahiFkhEK3z6XZHzqKRr5ksj5'

})
});

const order = await orderResponse.json();
console.log('Order created:', order.data.orderNumber);

}

12

2. Handle Errors Gracefully

try {
const response = await fetch(url, options);
const data = await response.json();

if (data.code === 0) {
// Success
return data.data;

} else {
// API error
throw new Error(data.error || 'Unknown error');

}
} catch (error) {

// Network error or parsing error
console.error('API Error:', error.message);
throw error;

}

3. Poll Order Status

async function waitForOrderCompletion(orderNumber) {
const maxAttempts = 60; // 5 minutes (5s interval)

for (let i = 0; i < maxAttempts; i++) {
const response = await fetch(

`https://0xswap.exchange/api/partner/order/${orderNumber}`,
{

headers: {
'X-API-Public-Key': publicKey,
'X-API-Secret-Key': secretKey

}
}

);

const data = await response.json();

if (data.code === 0) {
const status = data.data.status;

console.log(`Order ${orderNumber} status: ${status}`);

if (status === 'DONE') {
return data.data; // Order completed!

}

if (status === 'EXPIRED' || status === 'EMERGENCY') {
throw new Error(`Order ${status}`);

}

// Wait 5 seconds before next check
await new Promise(resolve => setTimeout(resolve, 5000));

} else {
throw new Error(data.error);

}
}

throw new Error('Order timeout');
}

13

4. Validate Addresses Before Creating Orders

Always validate wallet addresses on your backend before calling the API:

function isValidTronAddress(address) {
return /^T[A-Za-z1-9]{33}$/.test(address);

}

function isValidEthAddress(address) {
return /^0x[a-fA-F0-9]{40}$/.test(address);

}

function isValidBtcAddress(address) {
return /^[13][a-km-zA-HJ-NP-Z1-9]{25,34}$|^bc1[a-z0-9]{39,59}$/.test(address);

}

5. Store Order Numbers

Always save orderNumber in your database:

const order = await createOrder(...);

if (order.code === 0) {
await db.orders.insert({

orderNumber: order.data.orderNumber,
userId: userId,
fromCcy: 'USDTERC20',
toCcy: 'USDTTRC',
amount: 100,
status: 'NEW',
createdAt: new Date()

});
}

14

Example: Complete Integration

15

const OXSWAP_API = 'https://0xswap.exchange/api/partner';
const PUBLIC_KEY = 'partner_abc123...';
const SECRET_KEY = 'c105e76650fda1b9...';

class OxSwapClient {
async request(endpoint, method = 'GET', body = null) {

const options = {
method,
headers: {

'X-API-Public-Key': PUBLIC_KEY,
'X-API-Secret-Key': SECRET_KEY,
'Content-Type': 'application/json'

}
};

if (body) {
options.body = JSON.stringify(body);

}

const response = await fetch(`${OXSWAP_API}${endpoint}`, options);
const data = await response.json();

if (data.code !== 0) {
throw new Error(data.error || 'API Error');

}

return data.data;
}

async getCurrencies() {
return this.request('/ccies');

}

async getPrice(fromCcy, toCcy, amount, direction = 'from') {
return this.request('/price', 'POST', {

fromCcy,
toCcy,
direction,
amount

});
}

async createOrder(fromCcy, toCcy, amount, toAddress, email = null) {
return this.request('/create-order', 'POST', {

fromCcy,
toCcy,
direction: 'from',
amount,
toAddress,
email

});
}

async getOrder(orderNumber) {
return this.request(`/order/${orderNumber}`);

}
}

// Usage
const client = new OxSwapClient();

// 1. Get available currencies

16

const currencies = await client.getCurrencies();
console.log('Available:', currencies.map(c => c.code));

// 2. Get exchange rate
const rate = await client.getPrice('USDTERC20', 'USDTTRC', 100);
console.log(`Rate: ${rate.from.amount} → ${rate.to.amount}`);
console.log(`Min: ${rate.from.min}, Max: ${rate.from.max}`);

// 3. Create order
const order = await client.createOrder(

'USDTERC20',
'USDTTRC',
100,
'TXYZPrarV6ahiFkhEK3z6XZHzqKRr5ksj5'

);

console.log('Order created:', order.orderNumber);
console.log('Send', order.from.amount, 'to', order.from.address);

// 4. Track order
setInterval(async () => {

const status = await client.getOrder(order.orderNumber);
console.log('Status:', status.status);

if (status.status === 'DONE') {
console.log('Exchange completed!');
console.log('TxID:', status.to.txId);
process.exit(0);

}
}, 5000);

Support

For technical support or to report issues:

Email: support@0xswap.exchange

Contact Form: https://0xswap.exchange/support (https://0xswap.exchange/support)

API Status: https://status.0xswap.exchange (https://status.0xswap.exchange) (coming soon)

Changelog

v1.0 (January 31, 2026)

Initial Partner API release

Added /ccies , /price , /create-order , /order/{orderNumber} endpoints

Implemented API key authentication

Added rate limiting (60 req/min)

Support for 75+ cryptocurrencies

Real-time order tracking

•

•

•

•

•

•

•

•

•

17

https://0xswap.exchange/support
https://0xswap.exchange/support
https://status.0xswap.exchange
https://status.0xswap.exchange

Last Updated: January 31, 2026

Version: 1.0

License: Proprietary - 0xSwap.exchange

18

	0xSwap Partner API Documentation
	Overview
	Table of Contents
	Authentication
	Request Headers
	Obtaining API Keys

	Endpoints
	1. Get Available Currencies
	2. Get Exchange Rate
	3. Create Exchange Order
	4. Get Order Status

	Error Codes
	Currency Codes
	Important Notes
	Popular Currency Pairs

	Rate Limiting
	Best Practices
	1. Always Check Rates Before Creating Orders
	2. Handle Errors Gracefully
	3. Poll Order Status
	4. Validate Addresses Before Creating Orders
	5. Store Order Numbers

	Example: Complete Integration
	Support
	Changelog
	v1.0 (January 31, 2026)

